1,483 research outputs found

    Tailoring the photonic bandgap of porous silicon dielectric mirror

    Full text link
    A systematic method to fabricate porous silicon one dimensional photonic crystals has been engineered to have a photonic bandwidth up to 2000nm. The observation of the tailorability of the photonic bandgap (PBG) underscores the requirement of the large refractive index contrast for making broad PBG structures. In this letter, we present the fabrication and characteristics of such structures that may be promising structures for a large variety of applications.Comment: Published in Appl. Phys. Let

    Bell inequality violation by entangled single photon states generated from a laser, a LED or a Halogen lamp

    Get PDF
    In single-particle or intraparticle entanglement, two degrees of freedom of a single particle, e.g., momentum and polarization of a single photon, are entangled. Single-particle entanglement (SPE) provides a source of non classical correlations which can be exploited both in quantum communication protocols and in experimental tests of noncontextuality based on the Kochen-Specker theorem. Furthermore, SPE is robust under decoherence phenomena. Here, we show that single-particle entangled states of single photons can be produced from attenuated sources of light, even classical ones. To experimentally certify the entanglement, we perform a Bell test, observing a violation of the Clauser, Horne, Shimony and Holt (CHSH) inequality. On the one hand, we show that this entanglement can be achieved even in a classical light beam, provided that first-order coherence is maintained between the degrees of freedom involved in the entanglement. On the other hand, we prove that filtered and attenuated light sources provide a flux of independent SPE photons that, from a statistical point of view, are indistinguishable from those generated by a single photon source. This has important consequences, since it demonstrates that cheap, compact, and low power entangled photon sources can be used for a range of quantum technology applications

    Pump-and-probe optical transmission phase shift as a quantitative probe of the Bogoliubov dispersion relation in a nonlinear channel waveguide

    Full text link
    We theoretically investigate the dispersion relation of small-amplitude optical waves superimposing upon a beam of polarized monochromatic light propagating along a single-mode channel waveguide characterized by an instantaneous and spatially local Kerr nonlinearity. These small luminous fluctuations propagate along the waveguide as Bogoliubov elementary excitations on top of a one-dimensional dilute Bose quantum fluid evolve in time. They consequently display a strongly renormalized dispersion law, of Bogoliubov type. Analytical and numerical results are found in both the absence and the presence of one- and two-photon losses. Silicon and silicon-nitride waveguides are used as examples. We finally propose an experiment to measure this Bogoliubov dispersion relation, based on a stimulated four-wave mixing and interference spectroscopy techniques.Comment: 17 pages, 7 figure

    High frequency electro-optic measurement of strained silicon racetrack resonators

    Full text link
    The observation of the electro-optic effect in strained silicon waveguides has been considered as a direct manifestation of an induced χ(2)\chi^{(2)} non-linearity in the material. In this work, we perform high frequency measurements on strained silicon racetrack resonators. Strain is controlled by a mechanical deformation of the waveguide. It is shown that any optical modulation vanishes independently of the applied strain when the applied voltage varies much faster than the carrier effective lifetime, and that the DC modulation is also largely independent of the applied strain. This demonstrates that plasma carrier dispersion is responsible for the observed electro-optic effect. After normalizing out free carrier effects, our results set an upper limit of 8pm/V8\,pm/V to the induced high-speed χeff,zzz(2)\chi^{(2)}_{eff,zzz} tensor element at an applied stress of 0.5GPa-0.5\,GPa. This upper limit is about one order of magnitude lower than the previously reported values for static electro-optic measurements

    Monte-Carlo simulations of the recombination dynamics in porous silicon

    Full text link
    A simple lattice model describing the recombination dynamics in visible light emitting porous Silicon is presented. In the model, each occupied lattice site represents a Si crystal of nanometer size. The disordered structure of porous Silicon is modeled by modified random percolation networks in two and three dimensions. Both correlated (excitons) and uncorrelated electron-hole pairs have been studied. Radiative and non-radiative processes as well as hopping between nearest neighbor occupied sites are taken into account. By means of extensive Monte-Carlo simulations, we show that the recombination dynamics in porous Silicon is due to a dispersive diffusion of excitons in a disordered arrangement of interconnected Si quantum dots. The simulated luminescence decay for the excitons shows a stretched exponential lineshape while for uncorrelated electron-hole pairs a power law decay is suggested. Our results successfully account for the recombination dynamics recently observed in the experiments. The present model is a prototype for a larger class of models describing diffusion of particles in a complex disordered system.Comment: 33 pages, RevTeX, 19 figures available on request to [email protected]

    Hidden in plain sight: a massive, dusty starburst in a galaxy protocluster at z=5.7 in the COSMOS field

    Get PDF
    We report the serendipitous discovery of a dusty, starbursting galaxy at z=5.667z=5.667 (hereafter called CRLE) in close physical association with the "normal" main-sequence galaxy HZ10 at z=5.654z=5.654. CRLE was identified by detection of [CII], [NII] and CO(2-1) line emission, making it the highest redshift, most luminous starburst in the COSMOS field. This massive, dusty galaxy appears to be forming stars at a rate of at least 1500M\,M_\odot yr1^{-1} in a compact region only 3\sim3 kpc in diameter. The dynamical and dust emission properties of CRLE suggest an ongoing merger driving the starburst, in a potentially intermediate stage relative to other known dusty galaxies at the same epoch. The ratio of [CII] to [NII] may suggest that an important (15%\sim15\%) contribution to the [CII] emission comes from a diffuse ionized gas component, which could be more extended than the dense, starbursting gas. CRLE appears to be located in a significant galaxy overdensity at the same redshift, potentially associated with a large-scale cosmic structure recently identified in a Lyman Alpha Emitter survey. This overdensity suggests that CRLE and HZ10 reside in a protocluster environment, offering the tantalizing opportunity to study the effect of a massive starburst on protocluster star formation. Our findings support the interpretation that a significant fraction of the earliest galaxy formation may occur from the inside out, within the central regions of the most massive halos, while rapidly evolving into the massive galaxy clusters observed in the local Universe.Comment: 16 pages, 9 figures, 4 tables, final version to appear on ApJ (accepted May 19, 2018

    Dynamical Characterization of Galaxies at z~4-6 via Tilted Ring Fitting to ALMA [CII] Observations

    Get PDF
    Until recently, determining the rotational properties of galaxies in the early universe (z>4, Universe age <1.5Gyr) was impractical, with the exception of a few strongly lensed systems. Combining the high resolution and sensitivity of ALMA at (sub-) millimeter wavelengths with the typically high strength of the [CII] 158um emission line from galaxies and long-developed dynamical modeling tools raises the possibility of characterizing the gas dynamics in both extreme starburst galaxies and normal star forming disk galaxies at z~4-7. Using a procedure centered around GIPSY's ROTCUR task, we have fit tilted ring models to some of the best available ALMA [CII] data of a small set of galaxies: the MS galaxies HZ9 & HZ10, the Damped Lyman-alpha Absorber (DLA) host galaxy ALMA J0817+1351, the submm galaxies AzTEC/C159 and COSMOS J1000+0234, and the quasar host galaxy ULAS J1319+0950. This procedure directly derives rotation curves and dynamical masses as functions of radius for each object. In one case, we present evidence for a dark matter halo of O(10^11) solar masses. We present an analysis of the possible velocity dispersions of AzTEC/C159 and ULAS J1319+0950 based on matching simulated observations to the integrated [CII] line profiles. Finally, we test the effects of observation resolution and sensitivity on our results. While the conclusions remain limited at the resolution and signal-to-noise ratios of these observations, the results demonstrate the viability of the modeling tools at high redshift, and the exciting potential for detailed dynamical analysis of the earliest galaxies, as ALMA achieves full observational capabilities.Comment: 20 pages, 6 figures, Accepted for publication in Ap

    Análisis y ejecución de estrategias en la industria de sensores mediante la simulación CAPSIM

    Get PDF
    Documento en el que se muestra el trabajo realizado en la dirección de una empresa de la industria de sensores dentro del simulador de negocios Capsim. Se presenta un análisis de la industria de los sensores, se describe la empresa en la que se trabajó, las estrategias de negocio y el proceso de su implementación, así como los resultados finales
    corecore